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Introduction

The primary aim of a scientific investigation is to
find the most likely model for a situation out of a
host of alternative explanations. We usually start out
with many ideas and end up with a few hypotheses
but these are usually the ones that are most difficult
to distinguish between. Our aim is to thin that down
to one with no plausible alternatives.

I am assuming that for this symposium our
specific aim is to establish the existence and
importance of one of the population processes
(predation, competition, or disease) in influencing
the numbers of a target species. I will review some
of the various levels of evidence that are available to
field ecologists faced with this kind of problem.
Many sources of information can produce weak
evidence at best, so I stress the role of statistical
modelling and experimental design for efficiently
distinguishing between biologically relevant
hypotheses. In this context I discuss the concept of
pseudoreplication and try to clear up some
misconceptions that surround it.

Terminology

Though this paper has no pretensions to being a
philosophical discussion (I want it to be useful) we
do have to clarify what I will mean by three words:

Process: The interaction itself, whereby one
species eats, infects or competes with another.
Though these are the primary subjects for this
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symposium, mutualistic relationships are more
difficult to study than any of these, but may be just
as important to the survival of native species
(particularly plants - e.g., the role of mycorrhizae
and pollinators).

Effect: The interaction is of importance to a
population ecologist if the consequences affect the
population size. This will usually be by changes in
birth, death, immigration, or emigration. As we will
consider below, these can interact in complex ways,
so even a large change in any one of these may
actually have effectively no influence on the size of
the study population in the next generation.

Evidence: The information used to separate
hypotheses and exclude some as implausible. Weak
evidence forces one to say: this evidence is consistent
with a number of hypotheses; based on this evidence
we have no logical reason for choosing one over
another. Good evidence lets us say: only this
hypothesis is consistent with the facts; the other
hypotheses are contradicted. Of course this only
remains true until someone else comes up with a new
alternative hypothesis. But that’s the nature of
science, perceived truth changes: today’s dogma,
tomorrow’s bad joke. For this symposium we can
define levels of evidence as the probability of being
wrong if we assert the existence and importance of an
effect on the basis of the information in front of us.

Evidence therefore allows us to throw the risk of
being wrong into the balance with the other factors
we need to consider before taking action. Here there
is a distinction between scientists as scientists and
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scientists as managers. As we shall see, the nature of
evidence required to produce scientifically rigorous
conclusions is not the same as that required to initiate
action in an applied situation, because managers will
not be using purely scientific criteria to make their
decision. In both science and management we must
balance the probability of being wrong against the
risks of acting on the estimation of the effect, but risk
assessment is much more complex and important in
management. In science the only risk is being thought
a fool by the referee.

Results

Levels of evidence

Anecdote and casual observation
Though many scientists would rather die than admit
that anecdotal evidence was “scientific”; actually
many scientific hypotheses probably start life from a
chance observation. Such observations establish the
potential existence of the process. This serves to
stimulate further work to confirm the process and
investigate the effect. Of course, not all anecdotes
are equally credible, a story told about an animal by
a man in a pub may not inspire much confidence -
unless the story is told at a conference. Stories told
in the conference bar are often the start of new
hypotheses and research programs.

Logic, plausible arguments and mathematical
modelling
Starting from a set of assumptions (and sometimes a
smidgin of data) the thinker predicts that a certain
consequence is likely. This is often how people
conclude: “the process exists therefore it must be
important”. Unfortunately the success of pure
thought in science is patchy, to say the least -
particularly in ecology. Data has often shown that
nature has a depressing habit of being much more
complicated than we expect.

There is no doubt that logic is an indispensable
tool in science. But on its own, while it is a strong
tool for suggesting hypotheses, it is a weak one for
confirming them. Arguments that A causes B which
causes C, therefore since A is present so must C, are
only as good as the supporting data for the
inevitability of each of the links and the absence of
any alternative plausible models for the causation of
C. Computer or mathematical models are merely
formalised logic where the assumptions and logical
sequences are explicit so the argument if-this-then-
that, can be shown to be valid. It is therefore
distressing to find that scientists not infrequently
seem to accept logical argument and/or

mathematical (or computer) models as sufficient
justification for accepting a hypothesis or prediction.
MacArthur and Wilson’s (1967) Equilibrium Theory
of Island Biogeography is an example. An elegant
mathematical model suggested a plausible
explanation for observed patterns (e.g., that larger
islands hold more species). It was accepted as a
paradigm by an influential and prolific group of
ecologists during the 1970s and was assumed true by
much of the ecological research of the time. It was
only in the 1980s that it was finally pointed out that
the model had never been tested, and that much
available data actually contradicted it (Gilbert, 1980;
Williamson, 1981).

Computer or mathematical models that claim to
show what happens if certain assumptions are made
(and all models make assumptions) can be useful in
suggesting what could be happening in the real
world. But in the absence of data they are of no use
in determining what is happening. In particular,
simple models will seldom be of much use in field
situations since they generally do not allow the same
richness of behaviour that the real system can show,
they therefore usually will fail to suggest the full
range of what could happen. As a result they are of
limited use even for suggesting hypotheses. Like
logical thought (which is all they are, expressed in a
formal fashion) their conclusions will only be
adequate if they do not leave out relevant processes
or starting conditions.

In the end these models are of most use as
descriptions of the relationship between the
processes and the effects we observe. While those
descriptions are unsupported by evidence the model
remains a hypothesis, after the data have been
accumulated for the various links of the model, its
predictions have been tested and there are no
plausible alternative models, then our model
becomes a useful description of nature.

Computer and mathematical models are best
used as formalised hypotheses. In this form they can
be tested for internal consistency and consistency
with existing data. At their best they can make
predictions or have structural features that can be
tested or investigated in the field allowing them to
be falsified. However, as evidence they are only as
strong as the data that support them, and the number
of alternative models the same data would also
support.

Observational data

Observational studies (as opposed to manipulative
experiments) are traditionally the major source of
information about natural systems. In recent years
they have become a lot less respectable being derided
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as ‘mere natural history’ and ‘not real science’. This
is grossly unfair. Observational data can still be a
useful (sometimes the only) source of information on
important topics, so long as its limitations as evidence
are appreciated. It only becomes bad (or at least
inefficient) science if there are practical ways of
getting better information about the same subject, or
if the evidence is given more weight than it can
sensibly support. At its best observational data can
establish the existence of a process, but usually
provides only weak evidence of the magnitude and
generality of the effect. Arguing from pattern to
process is a dangerous thing to do, since any one
pattern is rarely explicable by only one process. We
can separate two types of observational evidence -
one which works and one which doesn’t.

Inference when there is no ‘referent’
In order to demonstrate an effect we must be able to
compare situations where the effect is present/strong
with those where it is weak/absent. The effect is
measured (and demonstrated to be non-trivial) by the
difference between the two. This is the basis of
correlation.

A great deal of bad blood was generated in the
early eighties by an argument over inferring
competition from the distribution of bird species on
islands. Surveys had shown that some bird species
were never found together on the same island
(Diamond, 1975). One group of workers inferred
that this was due to the effects of competition (e.g.,
Diamond and Gilpin, 1982), and another group
suggested that alternative hypotheses were equally
plausible (e.g., Connor and Simberloff, 1979, 1984).
There were some fairly silly things said by both
sides, in particular about the role of random
combinations of species as null hypotheses; but
ultimately it became clear that data of this kind can
provide only minimal evidence in support of
competition. They could not compare islands where
competition had occurred with islands where it had
not. So they could not show the effects of
competition. In this type of situation there are simply
too many alternative explanations, and the evidence
will seldom be good enough to distinguish between
them (Harvey and May, 1985).

A similar logic was introduced to me as an
undergraduate to show that heavy parasite loads
increased the death rate of the host. The number of
parasites per host is often well described by a
negative binomial distribution (Crofton, 1971). So, if
it was observed that the negative binomial appeared
to be truncated (no very heavily infested individuals
in the sample), we could infer that the heavily
infected individuals had died. Unfortunately, as later
authors pointed out (e.g., Anderson and Gordon,

1982), there was no reason to believe that those
hosts had even existed; their existence had to be
inferred indirectly. Other processes including inter-
parasite competition for space, host immune
responses, and age specific infection rates could all
lead to such truncated negative binomials. Since the
heavily infected individuals were never observed,
their death rate could not be compared with the rest
of the population.

Inference from correlations
Let us extend the previous example and suppose that
we were able to directly compare the parasite load of
dying individuals with the rest of the population. In
this case a difference might be due to the effects of
the parasites. We have a stronger case than before.
However this example again shows up the problems
with this type of information. There is at least one
alternative explanation: the ones that die are older,
older animals have had more opportunity to
accumulate parasites. It is the old problem that
correlations are poor evidence for causality. Such
correlations can establish the possibility of an effect,
they may also allow its estimation; though we can
seldom distinguish these from other causal
explanations. It is worth noting that if appropriate
extra information (e.g., age) has been gathered, then
appropriate analytic techniques (partial correlations,
multiple regression (Sokal and Rohlf, 1981), or
generalised linear models (Crawley, 1993)) can be
used to separate out the effects of age from those of
parasite load to help distinguish between the
alternative explanations.

There is a classic data set that relates the size of
the human population in the city of Oldenberg
between 1930 and 1936 with the number of storks
nesting there in the same years (correlation
coefficient = 0.92, P=0.003). Before we race off to
rewrite the gynecological text books we perhaps
ought to consider alternative hypotheses. Since the
storks nested on the large chimney pots of rich
people’s houses we might wonder if the number of
such chimney pots remained constant over that time.
In fact the city grew quite considerably over that
period so both the number of babies and the number
of storks increased. I would have liked to see the
figures for the nineteen fifties. The number of babies
would have increased as the city continued to grow,
but the number of storks might have declined due to
DDT. A significant negative correlation would be
almost inevitable. Would this allow us to suggest
storks as contraceptives?

Examples like this occur commonly in ecology.
For example, in sites where a potentially competing
species B is absent, species A has a higher
population size/birth rate/survival. In the past
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evidence like this was accepted as demonstrating the
action of competition; regrettably, in virtually every
case there was insufficient information to exclude
other equally plausible hypotheses like differences in
habitats between sites, or shared parasite or predator
species.

Separating the effect of interest from plausible
alternatives will generally be difficult in natural
situations - hence the interest in designed studies
(see below). But so long as the appropriate
information was collected and care and sound
biology are applied to the analysis to remove the
effect of plausible confounding factors like age or
habitat, and we have large sample sizes, then some
confidence can be placed in the conclusion.

Designed studies

In recent years many ecologists have realised that
extracting data from non-manipulative studies is
extremely difficult. They realised that to get the
strongest possible evidence from a study they could
use many of the strategies associated with the design
of manipulative experiments. These
“pseudoexperiments” as they are sometimes
unkindly known have the same objectives as
traditional manipulative experiments, but have the
major restriction that there is no control of where
and how the process operates within the study.
However, since they use the same methods (to a
degree) I will consider some of these methods first,
and consider the differences between designed
observational studies and manipulative experiments
at the end.The primary aim of any such study is to
measure the effect that the process has caused.

The two major aims of any design are: to
separate out the effect of interest from all other
effects (i.e., avoid confounding) and to allow
generalisation of the effect to some defined
statistical population in space and time.

Separation of effects
The chief aim of a designed study (experiment or
pseudoexperiment) is, where possible, to separate
out the effect of the process under study from the
environmental effects that might be confused with it.
For example, a study was published some years ago
by two workers (who now know better) where two
subtidal rocks were selected, and sea urchins were
cleared from one of them, the other being left as a
control. The barnacle density was recorded from
both some time later and the difference between the
two densities attributed to the sea urchin removal.
The problem with this design is that the difference
between the two densities could equally plausibly be
due to other differences between the rocks as

barnacle habitat. The authors had confounded (failed
to separate) the effect of sea urchin clearance from
the natural variability of rocks in the density of
barnacles they can support. As we shall see below
this is a clear case of pseudoreplication (Hurlbert,
1984).

The separation of effects is done in two main
ways. First, by randomly allocating treatments over
all possible combinations of other effects we make
sure that on average our treatment effects are
uncorrelated with these other effects and are
therefore separate. The trouble is that this is on
average, over many repetitions of the experiment,
which is not much use for any particular experiment.
There will, therefore, be correlations between the
treatment effect and environmental effects. If the
sample size is small then the correlations could be
quite large; so within a particular experiment there
could be confounding. Of course if it is obvious then
we throw away that randomisation to try another.
Still, some correlation will exist. This is allowed for
in the significance test which is why randomised
designs are of such low power -by failing to avoid
this confounding they are very inefficient.

The other main way to separate effects uses
orthogonal design, meaning that within the
experiment the effects of the designed factors are
uncorrelated. Within a particular experiment the
treatment effect is separable and unconfounded. This
design is clearly superior to randomisation which
relies on a “over all possible experiments” to work.
Because there is no possible correlation between the
treatment effect and the other factors incorporated
into the design, the treatment effect is much more
precisely estimated. This is why blocked and
repeated measures designs are so useful. (Of course
we must never forget that other, possibly
unrecognised, factors are operating so we must
randomise over them).

Example
Let us consider the difference between a nested
(random) and a randomised complete block
(orthogonal) designs. The scenario is that we are to
set up 3 treatments on 6 rocks with 3 cages on each
rock. Unknown to us, rocks are protected (P),
medium (M) or exposed (E) to wave action.

First let us consider the random design. We
randomly choose 2 rocks to receive treatment 1, 2
rocks for treatment 2, and 2 rocks for treatment 3. In
Table 1 are the first 7 such designs I got from my
random number tables. Clearly all the designs have
the treatment to a greater or lesser extent confounded
with rock type. On average over repeated
experiments they would not be. With larger numbers
of rocks they would be less likely to be so.
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Remember we do not actually know which rocks are
exposed. We would have to accept any one of these
designs blindly.

There are clearly two problems. The first is that
the sample of rocks chosen was sometimes not
representative of the population as a whole (e.g.,
Design II, perhaps also Design IV). The second
problem is that there was confounding of the
treatment effect with rock types, so most of the
designs were unacceptable ( I, II, IV, V, VI, and
VII). The significance test will (on average, over
many parallel universes) have the correct
probability, but this does not mean that our
particular experiment has a 0.05 probability of a type
I error ( a false claim of significance). For example
design V is certain to give us a ‘significant result’
even if the treatments have no effects at all.

Solution
We must ensure every treatment is equally affected
by the rock differences. They will therefore need to
be uncorrelated with the rock differences. Every
treatment must apply on every rock. In Table 2 a
design of this kind is shown applied to a number of
random samples of rocks.Now we can estimate the
effect of each treatment for a random sample of
rocks and get their average. Because the treatment
effects are now orthogonal to the rock effects there
is no confounding with the comparison between the
treatments and because there are more
treatment*rock combinations we have a smaller

standard error for each treatment effect (we measure
the effect on a larger sample from the population of
interest - rocks). We still have the problem that a
small sample may not be representative of the
population as a whole e.g., designs II and IV, but at
least we now have a better estimate of the treatment
effect.

This design does make one assumption, that
there are no slopping-over effects: the presence of a
high density cage does not influence the effect in a
low density cage on the same rock.

This kind of design can be difficult to achieve in
observational studies, but a similar approach can
sometimes be used if the appropriate information is
available. For example, suppose that we wish to
investigate the effect of predation by sea urchins on
barnacles but because we are working in a nature
reserve we are not allowed to manipulate their
densities. Now some rocks have urchins and others
do not. We first need to identify and measure any
environmental factor that could be correlated with
the density of urchins; if they also influence the
density of barnacles then they could be confounded
with the effects of urchins. Let us suggest that wave
exposure is such a variable. We can reduce its
influence on the urchin effect by choosing one of
each type of rock with urchins on and one of each
type without urchins. The main problems with this
approach are:
(a) there are usually rather a large number of

possible confounding variables so a design that
accommodated all of them would tend to need
an awful lot of rocks. Even measuring some of
the other important environmental variables and
correcting for them in the analysis requires more
work and more rocks.

(b) If known variables don’t confound the design,
then unrecognised ones will. Because in an
observational study we cannot randomise over
the unknown variables, we do not even have this
protection. There may be some unknown
variable that affects both urchins and barnacles.
While designing observational studies using
experimental design principles clearly can
improve the strength of the evidence we can get,
it will still seldom give as clear results as a
manipulative experiment.

Generalisation to defined population
For the results of a study to be interesting they must
imply something about a wider range of situations
than were studied. People will usually not be
interested unless they can accept that the same
processes will operate in much the same way in
other places and at other times. To let them know
how reliable that extrapolation is likely to be we

Table 1: A random nested design applied to seven random
samples of rocks.
______________________________________________________________

Design I II III IV V VI VII
______________________________________________________________

Cages
1,1,1 E M M E E E M
1,1,1 P M E E E E M
2,2,2 E E P M P P E
2,2,2 E M M E P M P
3,3,3 M M P E M P E
3,3,3 M M M M M M E
______________________________________________________________

Table 2: A randomised complete block (orthogonal) design
applied to 7 random samples of rocks.
______________________________________________________________

Design I II III IV V VI VII
______________________________________________________________

Treats
1,2,3 E M M E E E M
1,2,3 P M E E E E M
1,2,3 E E P M P P E
1,2,3 E M M E P M P
1,2,3 M M P E M P E
1,2,3 M M M M M M E
______________________________________________________________

McARDLE: EVIDENCE AND POPULATION PROCESSES
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must define the statistical population to which the
results can be applied.

It seems fairly obvious that if we want to
generalise to a population we should have a
representative sample from that population. For
example, to formally generalise the results of a study
to all kauri forests in New Zealand we should have a
representative sample of kauri forests, not just one.
This formal generalisation is made by using the
variability of forests as our error in any analysis. We
shall see below that such generalisations can be made
informally, making use of data external to the current
study, so that even when a study only looked at one
kauri forest some generalisation may be possible.

Designed observational studies versus
manipulative experiments

Observational studies
Because the study design will often be unable to
separate the effects of interest from the confounding
environmental factors, very often these will have to
be separated in the analysis. This puts a strong
reliance on techniques of statistical modelling like
partial correlation, multiple regression, and
generalised linear models. While these are the
indispensable tools of the observational ecologist
they are not simple to use properly. Also since these
procedures rely on the biological appropriateness of
the statistical model (with all its assumptions), they
can seldom provide totally convincing evidence of
an interaction’s influence. However they can
materially increase the strength of the evidence we
can get from observational data.

Manipulative experiments
In recent years it seems to have become fashionable
to assume that only a manipulative experiment can
give ‘scientific’ results. A well designed experiment
can indeed give more rigorous results than virtually
any other form of investigation. But because the
manipulation is by definition unnatural, the results of
the experiment are to that degree less relevant to what
is really happening. For example, in the experiment
the treatment will be applied to randomly chosen
individuals. In nature most effects are not randomly
distributed over sampling units. As a result of this
artificial mimicking of nature we may achieve an
unambiguous, precisely measured effect of some
manipulation, but because the change that was made
was deliberately separated from the correlated
changes that might accompany it in nature, the effect
may not be the naturally occurring effect. The
experiment merely establishes what could occur if the
change mimicked by the experimental treatment
happened naturally. It will seldom be able to show

what would happen. Much will depend on the
existence of appropriate controls. Experiments tend to
gain in rigour and precision as they lose in relevance
(at the extreme they are done in the lab). A badly
designed experiment will usually produce weaker
evidence than a good observational study.

Pseudoreplication

Having looked at the role design principles can have
in planning ecological studies it seems appropriate to
look at one of the most influential concepts to enter
ecology in recent years - pseudoreplication
(Hurlbert, 1984). It has probably been used to reject
more field ecology manuscripts than virtually any
other reason, but there is ample evidence that many
workers do not understand the limitations and
implications of the concept. It is defined as “ the use
of inferential statistics to test for treatment effects
with data from experiments where either treatments
are not replicated or replicates are not statistically
independent” (Hurlbert, 1984). Part of the problem
is that the definition conflates two quite separate
issues: the purpose of replication and the
independence of the sampling units.

Purpose of replication
Replication gives the ability to separate the
treatment effects from other effects. Clearly this
requires us to replicate the treatment on more than
one sampling unit so that the treatment effect can be
separated from the sampling unit variation. This then
is the true root of pseudoreplication as a problem of
design, the necessity to replicate appropriately in
order to separate effects from one another.

This aspect of pseudoreplication also has
implications for the analysis. As was mentioned
above, in order to generalise formally to a
population, we must have a representative sample
(i.e., more than one unit) from that population. In
particular we must have an error term derived from
that random sample. This is the core of the confusion
over the choice of error term in ANOVA. If we wish
to generalise to a population from which a random
sample was taken, like the rocks in the nested design
of Table 1 then we must use the variability
associated with the rocks to make inferences. If we
wish to consider the rocks we used as the complete
population (not a sample), perhaps because they
were all the rocks that were in the bay, then there is
no rock error and we would use the within-rock
between-cage error. Of course, since such results
lack generality, an audience may feel that the results
are uninteresting; but we are only guilty of
pseudoreplication if we claim a generality that the
analysis was not designed to provide.
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Independence of the sampling units
The assertion that sampling units must be
independent is completely wrong. This is a fallacy
largely perpetuated by word of mouth and
introductory statistics courses (I have been guilty of
it myself). In fact the requirement of the usual
statistical methods is that the errors after fitting the
statistical model implicit in the method of analysis
(be it regression, t-test, ANOVA, or contingency
table) are independent. Non-independent replicates
can be validly analysed, provided the non-
independence can be incorporated explicitly into the
model. Nested analysis of variance has non-
independent replicates, the lowest level replicates
(the cages in Table 1) are correlated when they come
from the same higher level unit (rocks in Table 1).
This correlation means that a simple one-way
ANOVA using just treatments and cages would be
inappropriate, the errors would be correlated. The
structure imposed by the rocks is simply
incorporated into the model as the nested term, the
errors are now independent even though the cages
are not. Many common forms of non-independence
can be incorporated simply into mixed model
analyses like repeated measures and random blocking
of factors. Even non-standard ones can often be
accommodated by modern techniques (e.g., Linear
Mixed Models (Searle, Casella and McCulloch,
1992), Generalised Estimating Equations (Waclawiw
and Liang, 1993), Generalised Linear Mixed Models
(Breslow and Clayton, 1993). There is little doubt
that independence of sampling units can lead to a
simpler analysis but often at the cost of power and
cost effectiveness. Non-independence can often be
exploited to improve efficiency both in sampling
(e.g., McArdle and Blackwell, 1988) or significance
testing (e.g., Legendre and McArdle, in press).

Interpretation of evidence

The strength of evidence associated with a study is
not necessarily a good measure of the effect it will
have on its target audience. Ecological studies do not
stand on their own, they are interpreted in the light
of information held in the heads of the audience. We
can identify four main features of the process.

Acceptance of the results as interesting
Conclusions based on weak evidence can be
interesting if the topic is of consuming interest to the
audience and/or because it has proved impossible to
get better data. Much of the modelling work in
population and community ecology got published on
this basis. These studies contain little more than
formal speculation but in a field where there is little
better available they were of interest and use.

Acceptance of the existence of an effect
If the evidence from the current study contradicts
strong prior beliefs, it is less likely to be accepted,
even published. Naturally enough the prior evidence
can be classified in the same way that I have used in
this paper. We can distinguish between prior beliefs
based on data, theory, intuition, or prejudice. If the
current study contradicts strong data-based evidence
from previous studies it is unlikely to be accepted
unless the contradiction can be reconciled or the
evidence in the current study is perceived as more
compelling. If the current study contradicts the
current theories or models it can have difficulty in
being accepted. But clearly its acceptance will be
more likely if the results generate new plausible
models of their own.

Counter intuitive results usually require stronger
evidence for acceptance. Beliefs based on prejudice
are clearly the most difficult to overcome. Generally
the strength of the study’s evidence has little to do
with this.

Acceptance of the generality of the effect
While we addressed earlier the problem of formally
generalising the results of a study, most scientists
use a sort of informal generalising based on their
knowledge (often intuitive) of the system being
studied. For example many physiologists will take
measurements from a single individual and then
generalise to all the members of the same species. If
the character being measured is known to be
relatively invariant in related species, like the
oxygen binding capacity of the blood, such a
generalisation is quite defensible. If the character is
known to be variable then such a generalisation
would not be acceptable. In fact this informal
generalisation is widely practised and is the basis of
most scientific inference. Those workers who
demand formal inference or nothing are ignoring the
successful application of informal generalisation by
generations of scientists. In ecology the problem
with this approach is that many of the effects being
studied are clearly variable, often extremely, in
space and time. Thus if we wish readers to
generalise our results, it is probably necessary to
provide arguments as to why a study can be taken as
representative of a wider class of situations.

Acceptance of the importance of the effect
Once the existence and magnitude of an ecological
effect has been accepted it is quite another thing to
show that it has consequences at the level we are
interested in. For example, we may have shown that
there is a measurable death rate due to predation; this
does not mean, however, that this will have any
measurable effect on the real population growth rate.

McARDLE: EVIDENCE AND POPULATION PROCESSES
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I can still remember an argument where I refused to
believe that an over 90% larval death rate due to a
parasitoid was not limiting a wild population of
Drosophila. In fact, as I finally appreciated, the
number of individuals in the next population was
entirely determined by the number of windfall apples
in the orchard. Such was the fecundity of a single
female that only a relatively small percentage of the
population were able to breed anyway. Reducing the
death rate would have no effect on the number of
larvae in the next generation. As a population factor
this enormous death rate was virtually irrelevant.

A further complication is that ecological
processes operate at a number of temporal and
spatial scales. It is often difficult to show that a
process, though having a major effect at one scale
may be having little or no effect at another, more
interesting, scale.

Conclusions

The correct assessment of the quality of evidence is
at the root of good science. This is not to say good
science requires only strong evidence, that would be
nice but we can progress, albeit slowly and carefully,
with less adequate information. For example,
managers may be required to act even in the absence
of good information because risks and costs of
waiting more than outweigh the costs of making a
wrong choice based on poor evidence. Even in
science, low quality evidence can be useful in the
sense that it is publishable - the apparently universal
criterion. In the absence of any information about a
subject, if the subject is interesting, scientists will
accept gratefully even poor quality information - it is
better than nothing. So long as their deficiencies are
born in mind, poor quality results may serve to
generate new hypotheses or modify our perception
of existing ones. Physiologists and molecular
scientists regularly publish results on one animal,
animal behaviourists publish results from incredibly
artificial laboratory experiments - their relationship
to reality (what animals actually do rather than what
they can do) is often small but other scientists
presumably find these results useful and interesting.

So, we can use weak evidence about agents of
decline in the New Zealand biota if we are careful to
never claim more than it can bear. One thing we
should avoid is the cry I hear all too often when I
point out that the evidence will not support an
assertion: “But it’s so hard to get good data!”. Yes,
such scientists have my sympathies. Nature is
awkward that way, and that means their information
may well be that much more interesting to their co-
workers because something is better than nothing.

But it does not change the quality of the evidence. If
it’s weak it stays weak, and conclusions based on it
must be appropriately worded.

The final assessment of the strength of a study
about competition or predation or disease will depend
on other evidence already available, this allows the
gradual accumulation of evidence in the same way
that lawyers will “build a case” out of largely
circumstantial evidence. This approach can also work
in science but we have to use great care that we
emphasise not the weight of the accumulated
evidence but its ability to distinguish between
competing hypotheses. An inconclusive study
repeated a number of times may produce a lot of data,
but will be no more useful than the same study done
once if it cannot help us choose between alternative
models. In the end, the main function of evidence,
however accumulated, is to help us identify the “true”
model for a situation. If it is not good enough to do
that, then wisdom forces us to say the most difficult
words for any scientist: “I don’t know”.
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