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SUMMARY: Path analysis is a statistical method akin to multiple regression in fitting a

quantitative linear relationship between variables. It has the further advantages (.)f handling
simultaneously complex multistage- interactions"

Examples are given of its use in determining relationship where there are few variables,
many variables, curvilinear relations, feedback interactions, and where a priiJri quantitative

infomlation is available from other sources.

The te-chniquc is also discussed in terms of the general problem of synthesis of ecological

data. It is concJudcd that the basic concepts of cause and effect among groups of variables

and their combination in a multistage causal scheme are applicable in all situations, while the
curve fitting properties of the technique and the ability to combine a priori quantitative data

from se\"Cral sources, provide a valuable means of synthesis at the empirical stages of a problem.

INTRODUCTION

Ecologists are concerned with the complex inter-

actions between plants, animals and their environ.

ment. Whether these studies be at the conceptual

level, or \\'ith qualitative or quantitative data, the

concern is generally \vith the simultaneous inter~

action behveen manv variables..

\\There the ecologist has qwintitative data he will

often find that there are limitations in the methods

'of statistical analysis available to him in consider~,

ing these simultaneous interactions and in the unp

certainties associated with the measurement of any

variable.

In an earlier paper (Scott 1966) I outlined some
- of the basic ideas of path analysis,which is a

statistical technique akin to multiple regression

in detclmining the quantitative relationship be-

~ tween variables. But unlike multiple regression it
; is not confined to the estimation of one variable in
i terms of a group of independent variables. It can

simultaneously consider relationships where \"ar-

:iables which arc "independent" variables in one

relationship may be "dependent" in another.
1Also in determining the relationships, the method

'can use already kno n quantitative relationships.

Finally, and possibly the most valuable contribution

of the method, is that it is built on a conceptual

frame\vork which may provide the basis for the

general analysis and synthesis of ecological data.

The purpose of this paper is to describe the role

of path analysis in these more complex situations

and to discuss the place that path analysis may

play in the more general problem of analysis and
synthesis of ecological data.

The method was first developed by Wright

(1918, 1934 and 1954) for correlation problems
in genetics but reached its present development in

economics under the title of structural analyses or,

simultaneous linear equations (e.g. Theil 1958).
Further details are given in the following refer-
ence'~ Turkey (1954), Li (1955), Theil (1958),
Turner and Stevens (1959), Campbell, Turner
and Wright (1960), Theil and Goldberger (1961),
Ferrari (1963, 1964), Zellner and Theil (1962)
and Hamilton (1968),

PATH ANALYSIS AS A STATISTICAL METHOD:

SIMPLE EXAMPLE

The information given by Scott (1966) will be

briefly rec.apitulated using as an example the re-

lationship between the rate of leaf elongation of

Notodanthonia setilolia on several sites above tim-



Description Code Name Range
..

Incoming radiation (as proportion
of mean for all periods) LIGHT 0,47 to 2,65

Mean daily air temperature at
1m above ground ("C) AMEAN 2,6 to 14,9

Mean daily soil temperature at
lOem depth (OC) SMEAN 2,2 to 14,4

Rate of leaf elcngation of
Notodanthonia setitolia

(rum week-1) NOTO 0.4 to 6.1
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berlioe in the Tongariro National Park and the
environmental factors of incoming solar radiation,

air and soil temperatures (Table I and following

diagram) :

LIGHT .. NOTO

AMEAN .. SMEAN

TABLE 1. Variables and Range in Values in SimPle

Example of Leaf Elongation in Notodanthonia
setifolia.

The reader is asked to look at this and subse.

queot examples primarily as demonstrations of the
characteristics of the path analysis method and

only secondarily as particular ecological problems.
The basic concept of path' analysis is that, in

aflY particular problem, involving the relationships
among a group of variables, some variables can be

rec0gnised as primary causes (LIGHT, AMEAN)
and others as effects (NOTO) including the cases
where a variable may be a cause in relationship to
some variables, and an intennediate effect in re.
lationship to others (SMEAN). These relation-
ships can be shown diagrammatically with the
variables listed and the arrows indicating the dir-
ection of the interaction.

-

In the particular example, the grass leaf growth
. (NOTO) 'was probably related to temperature

and incoming solar radiation (LIGHT)-the latter
either pa;iiively through photosynthesis or nega-

tively through water stress. Preliminary analysis

suggested that it was soil temperature (SMEAN)
rather. than air temperature which was important
to growth. Soil temperature (SMEAN) was ex-

pected to be related to both solar radiation

(LIGHT) and mean air temperature (AMEAN).
Thus solar radiation and mean air temperature

were regarded as "causes" with soil temperature

as an "intermediate effect", and leaf growth as a
final Heffect". For the purposes of the example
these were assumed to be the only variables and
interactions present.
Structural equations can be written down for

each effect in terms of its immediately preced-
ing cause. V\'here measurements are available of
all the variables then the coefficients (path co-
efficients) of these equations can be determined

by statist:cal means:

SMEAN = 0,605 LIGHT + 0,916 AMEAN
NOTO = 0,813 - 0,287 LIGHT + 0,320 SMEAN,

These latter equations are determined simul-
taneously and take cognizance of some variables

appearing as both dependent and independent
variables within the one set of equations.

At this stage it is as well to remember that any
statistical method is only concerned with the
characteristics of the nUTIlerical data and that the
ultimate validity of the relationships obtained is
more dependent on the investigator's understand-

ing of the expected relationships and the appro.
priateness of the parameters measured.
\V1th this proviso the completed solution en.

abIes several things to be done. Firstly, through'
using these equations singularly, the values of,
effect variables can be estimated from values of

causes. Secondly, through using the equations as

a group they can be used to estimate how changes
in one variable will influence others, through it~
effect along various pathways. It is this ability

of path analysis to handle the simultaneous interac.
tion between many variables which seems to havf
potential in ecology.
The third aspect of the results which was no

discussed in the first paper is that, if certain as
sumptions are met, tests of the statistical signifi
cance of the coefficients can be made. This allow'
hypothesis testing and determinations of confi
dence intervals.
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The distinction between path analysis and other

methods is most evident in the determination of

error variances required for making tests of sig-
nificance. In most other statistical methods the

equation being fitted to describe the relationship
is of the form:

(y + e) = pXt + pX2

where the dependent variable (y) is related to a

linear function of the independent variable X1, Xz,

where the latter is assumed to be measured without

error, and where any random effects or errors (e)

only appear as differences between the actual and

predicted value of the dependent variable. The

same applies in path analysis in equations in which

the only independent variables are primary causes.

The differences are where intermediate effects

(y 1) are the independent variables in other equa.
tions with final effects (yz), e.g.:

(y + e), = p(y + e), + px"

In this case there are random error effects in both

some of the independent variables (these being

intermediate effects) due to their relationship

with other variables in the set, and random effects

between the actual and predicted value of the

dependent variable (final effect yz). The statistics

of path analysis estimate both classes of random

effects which contrast with the single class of

errors of the dependent variable determined by

other methods.

It will be noted that the term "independene'

lvariable refers to primary causes while "depen-
ident", variables refer to both intermediate and

\final effects.
,,
; There are two consequences, of being able to
'estimate error variance of both dependent and

',some of the independent variables.

, First, it is this which allows -the method to de-

'~ermine simultaneously the ~latiO'nship between

~ifferent groups of variables within the one set

pf data - not only the path coefficients but also

a consistent set of variances to allow statistical

tests to be made on these coefficients. In other
methods each relationship tends to be looked at

in mathematical and statistical isolation with little
regard for the interaction with other relation-

ships containing the same variables. It will be
noted that interaction is used not in the sen'se,that
the effect of two or more variables on a third may
be confounded, but in the sense that there may
be relationships between the first group of variables
other than their effect on a third.

Also, consideration 'of random errors iri effect

variables, whether they be dependent or indepen-

dent variables in particular relationships, comes

closer to reality as there are l;kely to be errors or

uncertainties in the measurement' of any variable.

,
ASSUMPTIONS

The following assumptions are made with regard

to the data when they are used in the derivation

and testing of path analysis equations.

(a) That the values of all the variables are mea-
sured as departures from their mean value. In

practice this can be simply circumvented by

introducing a constant term into all the struc-

tural equations.

(b) That the independent variables (primary
causes, x's) are measured without error. No

other restriction is placed on the distrfb~tion

of their values, e.g. 'they could be, selected

by the investigator. Measur~ment Without
error is unlikely in practice but is the a1ssump-

tion made in almost all statistical tech1niques.

However, environmental variables call often

be measured with considerably greater, accu-

racy than plant or animal responses. I

(c) That there is a linear and add~tiye r~sponse

of each dependent variable to changes in each

of the other variables which direc;:tly influence

it. In many cases this could be regarded ,only
as' a first approximation. As_no assumption.is

made about the distribution of the values of
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different variables, it is possible to transform

the raw data so they better approximate a

linear relationship, or to introduce ne\~' vari-

ables which are functions of other variables.

(d) That the errors in each of the dependent

variables are random wi th zero mean and a

yariance independent of the values of any

other variables or any of the path coefficients.

Apart from this there are no other, restrictions
on the distribution of the values of the depen-

dent variables when they are used to calculate

path coefficients and their variances. Errors in

"
qependellt variables are often related to the

. magnitude of the value, .e.g. errors in mcas-
., uring, growth are often proportional to the

, mean size of the individual or population.
This may be the second reason why the

variables in ,the raw data may have to be

transfonned prjor to analysis.

(e)
-

To make tests of significance, or to dctcnnine
confidence intervals for the path coefficients, it

"
is I1ccessary to make an additional assumption,

'.:_ ~not only that the errors in the dependent,
variables are independent with zero mean and

constant variance, but also that they are nOf-

mally, distributed (or whose distributions

have, if other than normal, known character~

istics). This is difficult to establish in par-

ticular cases. However, many classes of bio-

logical data have been shown to have ap-

proximately nonnal distributions.

(f) If it is desired to test the significance of al~
ternative fanns of particular structural equa-

tions using the multiple correlation coefficient,
then (b) must be replaced by the assumption
that not only are independent variables
measured without error, but also that each
variable is derived as random salnples from a
nonnal distribution of values.

\'Vhile these assumptions seem restrictive when
given in a list, they .are assumptions made in
many other methods of statistical analysis (and
more frequently ignored) ~ The success of path an-

alysis depends both on the applicability of the
causal scheme used, and the degree to which the
assumptions are met in collection of the data.

COMPLEX EXAMPLE

There is no theoretical limit to the number of

variables and the number of relationships;-that
can be dealt \"lith by path analysis, apart from the

requirement that the number of variables (depen-
dent and independent) in anyone structural equa-

tion does not exceed the total number of indepen-
dent variables in the whole scheme. The limita-
tions in practice are measurement of variables and
computational facilities.

An example involving many variables is taken
from previous work (Scott and Billings 1964) on
the relationship between above-ground standing

crop of 44 species on 50 sites 'and 39 environmental
factors. Table 2 gives the 26 variables used in the
example.

-,

In .IlloSt problems the relationships between cer.

tain
-

variables is probably well understood and

well documented. If attention is first concentra-

ted on drawing up the expected relationships be-
tween' such smaller groups of variables the prob.

lem is not as formidable as if initially faced with

a 'long list of variables. As before, the relation-
ships need' to be drawn up on the basis of pre.
viGUSknowledge of the particular problem or from

consideration of the biological, biochemical or phy-
sical principles involved. Ideally this should' be

done prior to the selection and measurement of
the variables.

An example of the relationship between a group
of variables from the large list (Table 2) is that

between solar radiation, altitude, snow cover, soil

temperature and soil moisture. Soil temperature
would be expected to decrease with altitude be. ~

cause of adiabatic cooling and changed radiation!
balance with increased outgoing radiation.' Tern- 1

pera~ure would be dependent on solar radiation!

since it is the energy source. " "

Precipitation in the form of snow cover 'mayor;
may not increase with altitude at the elevations
considered (Daubenmire 1943), Also, the lower
the temperature .the less would be the snow melt
and the greater the snoW cover. Soil ternperatur~
would be inOue'need by soil moisture through in-;



creasing the thennal capacity of the soil resulting

in a lower temperature rise for a given input of
solar radiation. Thus a partial scheme for the re.

lationship between these variables, and the prob-
able signs of the' path coefficients, would be as

fol1lows:

Similarly, the moisture tension characteristics of

the soil would be expected to be related to the

amount and type of soil colloids as measured by

soil organic matter and percentage clay:

In this manner small partial schemes have been
worked out and combined to show the expected
relationships between all the variables:

The data are then used to compute the structur.

al equations, path coefficients and standard devia-
tions from the sample data using the expected re.
lationships between the variables. The computa-
tion of the standard deviations is given in Hamil.

ton (1968).

The structural equations with path coefficients
are listed below. Following each equation, in this

and subsequent examples, two sets of numbers in

brackets are given. The numbers in the first are
the standard error of the equation, and the per.

centage of variation accounted for by the equa.
tion obtained by squaring the multiple correlation
coefficient. The second bracket contains the signi.
ficance of each path coefficient, including the con-
stant tenn, detennined from its standard deviation

('1' test, *=sig. at 5 percent level, **=sig. at 1

percent level), and also the standard deviation as
a percentage of the value of the path coefficient.
These are listed in the order in which the variables

appear in the structural equation.

The structural equations and path coefficients
for the relationship between the environmental
factors in the example were as follows:

"

STEMP = 14,8-0,0472 SORAD-O,077 SM,3
-0,470 ALTIT
(2.0, 29) (*40, **25, ns533, ns132)

SNOWC = 8,76-0,194 STEMP + 1.11 ALTIT
(2.5,2) (ns93, ns383, ns293)
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SORAD

SM.3'

ALTIT'

.STEMP SNOWC

OM

CLAY

SM.3

SM.15

SORAD S.MST TOTAL
-
SM. 3
SM' 15

:CLAY IWV PH

ALHf
, -

.STEMP
. .

-OM ~BD

SMOV

YEAR~
SEASN

$ NOWC N
, .
P. CA K.

-

MG

Standing crop of species
ARNOB, ARTSC, DESCH,

POALP, POTDV



CA = --51.0 + Lll OM-O,11 CLAY + 11.7

PH-0.35 lWV
(8.1,3B) (**27, ns9H, 118201,**21, ns2(3)

MG = -B,99 + 0.5+2 OM + 0,03B CLAY +
2,11 PH-O,2';+ !WV
(1.7,17) (**31, *42, 118223,**23, *57)

K = -0,25 + 0,0369 OM + 0,0129 CLAY +
0,105 PH-O.013 lWV
(C.2l, 17) (11"1+5. I1s78, m8G, 11$-60, IIsH1)

OM ~ 18,5--0,4+5 SMST + O,O:ni
TOTAL-J.:J2 5TEMP
(7,3,32) (**31, I1s96, *43, *37)

BD = 1.17-0.0213 OM:+ 0.0117 CLAY
(0.17,55) (**7, **15, I1s(1)

SM,3 = 10,2 + LB4 OM + 0,67 CLAY

(7.6, 79) (**36, **7, *47)
5M,]5 = 3,i6 + 1.75 OM + 0,21 CLAY

(7.3, BO) (m92, **7, 11S145)
N = 0,0899 + 0,{1514 OM

(0.14,91) **36, **4)
P ~ O,i9 + 0,4+0 OM + 0,i66 CLAY

(7.+6, 12) (lIs450, **31, *41).

In these most of the path coefficients reached

statistical signiflcancc.

The relationship between the logarithm of the

standing crop of the species and the group of

12 enviroJ1ulental factors to which they were

"

" ~--------',._.-------_."-------- ___,.~n__ _ ________n _____._ ___u_
,
,

Dcscrirition Code :-.,r awe ?\fean S,l),

___ '_'_______,___,__, _n___~'_____,_________~_.._ _,__,___ ---------<.-----,,-.--- ---------

_Altitude of site (m above 3,000) ALTIT 336 115
\Vinter snow cover ( 1-10 scale) SNOWC -') 2,4:).1

Soil moisture regiJlJe (1-10 scale) S,~IST J.i 2,6

Soil mOH'lllent (1-10 scale) S,MOV 7,6 2,1

Solar radiation (percent of level site) SORAD 97 "
30 em soil temperature (0(;) STEMI' 7,8 1.9
Clay (2/-t! in tOjJ soil (percent! CLAY 8,(J 'I -~ . /
Bulk density of top soil (glee) HI) 1.0 (J.3

1mbibitional water value of top soil (percent) 1WV 19.5 12.7

I (" atmosphere moisture tension (percent I SM.3 36,5 16,6
, 15 atmosphere lIIoisture tension (percent) S:-'Ll5 26,4 12,9

I'll of top ,oil I'll 5.0 (J,6

Organic matter ill top soil (percent I OM 11.1 H.9

Total nitrogen in top soil (perccnt) N 0,68 (J,46

Phosphorlls in top soil (ppm) I' 11.9 8,0
Calcium in top sojJ (IJleqIOOg-l) CA 11.+ 10,4
~1agnesillm in top soil (meqlOOg-') \,]C; 2,9 LB
Potassium in top so-iI'(meqlOOg-') K 0,54 0,2+
Year YEAR 1.72 0,45
Season (days) SEAS!\' O,B 8.0
TotaJ abO\'cwground standing- crop (g.m....Z) TOTAL 160,5 70,8
Arenaria obtusil()ha standing crop (g.m-:!) ARNOn I? -

23.4_.:J
ArtemL~ia scopulnru7n standing erop (g.m-~-) ARTSC 6.5 10,fj
Deschampsia caespitosa standing crop (g.m.-:?) DESCH 17,1 +:J3
Poa alpin a standing crop (g.m.-~) I'OALP ? - 7,2-.I

Potentilla divenifolia standing crop (g.m.-:!) I'OT!)V 5.1 6.~

,
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.. ., ,

Tj\BLE 2. Dc.scription, Code Names. .iHerll1 Vailles

r"~i'iabl<:J__Togctlter [cith Abrn't'-Gr()und Stnllding

i7( <1~fedicille BOtc Range, HlyoIII illg. (From Scott
... ",,'<-; ,-

a,'d Standard Du'iation of Some Environmental

Cro/J of 5 Sf/uie.I'. frail/. 50 Alpine Tundra Sites

(/ lid Billings 1964).



expected to be related were mostly not significant

as a group and are not given.

The interpretation of such results depends in

part On statistical inference. In this, path analysis,

in common with other methods, depends on the

test of a null hypothesis derived from the expec-

ted relationship against sample data. A prime re-

quirement, which is frequently ignored, is that the

ALTIT

SMOV

YEA'R--

SEASN

between the variables can be recalculated to re.
Inove all nonsignificant coefficients and the best

(minimum variance) values of the remaining co-

efficients recalculated, While they are the best

estimates no statement of their reliability can be
made.
In the particular example this reduces the

scheme to that shown:

Standing crop of. species
ARNOB, ARTSC, DESCH,
POALP, POTDV

hypothesis and the sample data must be derived
independently of each other. It is inadmissable to
construct a hypothesis from a preliminary analysis
of the data and then to use the same data to test
that hypothesis statistically (Sanderson 1954, Theil
and Goldberger 1961),

Thus, in path analysis, the expected relation-
ships which fonn the hypothesis should be drawn

up without direct reference to the sample data. If,
after fitting the data, some of the expected path
coefficients are not significant then this may be

regarded as evidence for rejecting parts of the
original hypothesis. Should the insignificant factors
be deleted a new hypothesis is formed and should
be tested on a new independent set of data.

The above comments refer only to the statistical
tests. The path coefficients of structural equations
of any alternative scheme are correctly estimated. ,

by the method, but the variances can no longer be
used for making statistical tests or estimating the

~ confidence intervals of the path coefficients. Thus,
iwith these limitations in mind, the relationships

and the best estimates of the modified structural

equations containing only the variables which
would probably be' significant if tested on a fur-

ther sample were as follows:
.

STEMP = 10,9-0,079 SM,3
(0.31,20) (15,44)

CA = -53,0 + 0,614OM + ILS PH
(7,6,46) (19, 21, (7)

MG = -,7,4) + 0,140 OM + US PH
(L24,53) (23,15, 18)

K = 0,0152 OM + 0,0736 PH
(1.20, 26) (21, 12)

OM = 16.4 + 0,0406 TOTAL-1.45 STEMP
(7,3,31) (33,39,33)

BD ~ 1.28-0,0233 OM

(0,18,53) (3, 13)
SM,3 ~ 10,2 + 1.84 OM + 0,67 CLAY

(7,6,79) (36,7,47) .

SM,15 = 5,78 + 1.72 OM)
(7,2,80) (29,7)

N = 0,0899 + 0,0514 OM
(0,14, 91) (36, 4)

,

P =0,461 OM + 0,826 CLAY
.

(7,36, 13) (20, 18) .

and for' the relationship between species (Iogar.
ithm standing crop) and environmental factors:
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SORAD/ S.MST TOTAL SM.3' CLAY IWV PH
,

SM.15

r

STEMP
, .

.OM BD

,SNOWC N 'PCA K
...MG

,... .



Code
Description of Variables Name Range

C02 exchange of shoots
(mgm COz.g-l.hr-t) CO2 -22 to 70

Temperature of fully illuminated
leaves (OC) LTEMP 7,0 to 50.3

LTEMp2 LTEM2
Temperature of sampling chamber
wall ('C)

CTEMp2 CTEMP 2,6 to 50.3
Light intensity in sampling
chamber (watLm-Z total) LIGHT o to 1,000

LIGHT' LIGH2
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ARNOB = -63,8 + 10,6 SMST
(29.4, 46) (16, 15)

ARTSC = 4,84 SMOV-5,42 STEMP
(32,6, 18) (30,25')

DESCH = 0,98 SMOV-L59 SNOWC

. (3,15,56) (14,11)
POALP = -52.3-6,02 SNOWC + 6,36 SMOV

(36,0, 10) (52,48,39)
POTDV = {,06-0,805 SNOWC

(3,83, 0) (45, 37),

The particular results will not be discussed apart
from the general comment that the variation ac-
counted for by each of the structural equations
is generally low, particularly for those between the

standing crop and immediately preceding environ.
mental factors.

CURVILINEAR RELATIONSHIPS

No assumptions are made in path analysis re.
garding the distribution of values of the vaxiables.
Accordingly it is possible to introduce additional
variables which are squares, polynomial, product

(interaction) or other transfonnations of other
variables. This allows curvilinear relationships to
be fitted. The effect of such transformations is to
introduce further independent variables (primary
causes) into' the scheme. That one variable may
be the transform of another is not taken into ac-
count in the fitting procedures and the variables

are treated as if unrelated. Path analysis is sim-

ilar to other methods in this (e.g. analysis of var-
iance and multiple regression).

An example is from an experiment in which the
carbon dioxide (CO.) exchange of shoots of Tri-

folium repens was measured at a number of light
intensities and temperatures (Scott and Menalda
1970), The relationship between CO, exchange
and both these factors is known to be strongly
curvilinear. In addition, because of the size of
the plants and their ,interaction with light, there

\\'as a difference between leaf temperatures and
those of the adjacent walls of the sampling
chamber. It was expected that CO2 exchange
would be dependent on leaf temperature and light
intensity, while leaf temperature in turn would be
dependent on' light intensity and chamber wall
temperature. The expected curvilinear relation.
ship was dealt with by introducing quadratic
tenns. The description of the variables, range of
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values and coding are given in Table 3 and the

expected relationships shown diagrammatically as

follows:

CTEMP

CTEM2
LIGHT
lIGH2

lTEMP>
lTEM2

.C02

TABLE 3. Description and Range of Variables in
Gurvilinear Example of GO. Exchange of Shoots

of Trifoloum repens.

From these the following structural equations and

path coefficients were determined:

LTEMP = 0,88 + 1.0'8 CTEMP-3A3xlO" CTEM2

+ L41xlO" LIGHT-4,13xlO" LIGH2
(1.5, 99) (m>54, **4, **24, **12, *44)

C02 = -21.8 + 2,37 LTEMP-O,0589 LTEM2
+ 0.162 LIGHT-L21xlO'3 L1GH2
(10.5,80) (**19, **13, **9, **8, **11).

FEEDBACK

Feedback between variables in a problem would

be recognised during the construction of the path

diagram by arrows of opposite direction linking
the same two variables either directly or through

inteffilediary' variables. Path analysis can attach
quantitative coefficients to each path or ]ink in
such feedback relationships.
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An example is taken from part of the previous
complex example, in that total above-ground

standing crop was given as one of the variables

along with an index of micro-organism activity

(soil temperature) in determining the organic mat~
ter content of the top soil. But organic matter con-

tent, through its effect on nutrient status, was one
of the factors indirectly related to the standing

crop of individual species and therefore total
standing crop. Thus there was probably feedback
between soil organic matter and total standing
crop.

A simplified relationship is given below in which
the only other variables influencing total standing
crop was soil movement - the environmental var.
iable with which it was most c.losely correlated.

smov +1-29 stemp
The structural equations with path coefficients

determined using this scheme were:

OM = 16,4 + 0,0406 TOTAL-1.45 STEMP
(7.3 31) (**33, **39, **33)

TOTAL = 1.29 OM + 19,2 S,MOV
(27.5, 44-) (n586, **10).

The l\vo main path coefficients are indicated in

the diagram even though one did not reach statis-

tical levels of significance. Positive feedback was

indicated by the similarity in sign of both co-

efficients.

If coefficients were of opposite sign negative

feedback occurs. Equilibrium is often obtained in

those cases. An example is illustrated by Turner

& Stevens (1959),

MIXED ESTIMATION

In the examples given to this stage all the quan-
titative estimates of path coefficients' have been
derived from the sample data. But there is an ex-

tension of the path analysis technique which al.

lows a priori quantitative data to be incorporated

into the solution.

In any investigation, the taking of measurements

is usually prompted by the belief that there are, or

may be, relationships between the variables con-
cerned. Generally it is the qualitative aspects of

these expected relationships which form the hypo-

thesis which is tested against the sample data.

However, it is also reasonably COlnmon to re-

ject, or at least question, the statistical inferences
drawn from data, either by maintaining that a

particular relationship exists even though it was
statistically non-significant in the particular data,
or by refusing to accept a "fortuitous" statistically
significant relationship for which there seems to be
no biological basis. The reason is that generally
the investigator kno\"rs more about the relation-

ships than he is able to incorporate into the initial
hypothesis. For instance he may know whether jt
is a direct or inverse relationship between par-

ticular variables, or, indeed, may be able to specify
the quantitative relationships to within certain
limits. It is these a priori quantitative data which
are difficult to include in most statistical tech.;

niques, but which are often the basis for criticism
of the results subsequently obtained. Often it would
be more desirable to include the a priori data in

the initial statement of the problem along with
the sample data and, if the two are not incom-

patible, to combine both sources of information.

In path analysis a priori data are incorporated

into the computation as subsidiary equations
stating the mean and variances of selected path co~

efficients or combinations of path coefficients in
particular structural equations, e.g.

P12 = b :t V

P12 + P32 - P42 '= b + appropriate variances
and covariances.

Several such restrictions can be applied simul-

taneously to each structural equation (presuming

of course that they are not incompatible). The

greater the accuracy of the a priori restrictions the

more they will influence the, final value of the

path coefficients. Conversely, if the means or var-

iances can be estimated only approximately then

, . .

TOTAL OM

N



Code
,

Description of Variables Name Range
.-

"
." ,,-

Altitude ((m above 1,000)/1000) ALTIT 0.199 to 0.564
Soil moisture (% in gypsum
. h!ocks) MOIST 84. to 116

Midsummer 30 em soil tempera.
", ture lOC) TEMPR 8.3 to 12.2
Frequem:y of Celmisia spectabilis

(%) CELMS ° to 44
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the a priori restrictions will. have, only, a slight

influence of the final values e.g. ,vhere only the

sign of a path coefficient is knmvn (say positive)

and where, this restriction has to be incorporated

by specifying a positive number \vith a large var-
iance. In all cases it is prudent to check that the

\-~ariances of the a jJTiori restrictions are not statis-
,- ,

ticalh' difTerent from the unrestricted estimates of. . .

the path coefficients before combining both esti-

mates,

An example is a problem concerned with an al-

pine area and the relationship bet\veen aJtitude,
soil temperature, soil moisture and the frequency

of a particular species (Table 4). ,It was expec-

ted U1at soil temperature would be influenced by

altitude and soil moisture while the frcquency of

TABLE 4 .DescrijJtion ,and Range of Variabk~ in

"Vfixed Estimation ExamJlie of Frequency of Cel-
misia. spectabilis.

the species would be influenced by soil tempera-

ture and soil ITloisture, and that altitude would

exert an efTect only indirectly through its effect

on soil temperatu-re, viz.

ALTIT :TEMPR

MOIST -CELMS
Path. analysis of :data from 20 sites gave

the f()llowin'g structural eqqations and path co-

efficicnts (.\{ult. R:!. not _given):

TEMPR = 13.6-5.55 ALTIT-O.0105 MOIST
(0,63) (**16, **25, nS171)

CELMS = -11.4 + 3.82 TEMPR + 0,141 MOIST
(13.7) (11~127, 11~140, n5265), '

In these most of the path coefficients are not sig-

nificant as indicated by. their standard deviations,

which are larger than the path coefficients.

But suppose there were other reasons for believ-

ing that such relationships existed ~ as, for

example, that more extensive microclimate studies

(hypothetical) had established that mean soil tern.

peratures decreased 6.2°C per 1,000 m with a

standard deviation of 0,3°, and that, in some man-

ner, single factor expcriments in growth cabinets

had established that the frequency of C. ,~lJectabilis

increased 3.2 + 0.15 percent per 1°C in tempera-

ture and increased 0.25 + OJ)02 percent per 1

percent of soil moisture. Because of their variabilitv
. '

the values based on the fIeld measurements are not

inconsistent v..'ith these:

ALTIT TEAAPR

MOIST C ELMS

An extension of path analysis combines both the

a priori estimates of pJth coefficients and their

variances, and those determined from the particu-

lar set of data. The details of the method are

given by Theil & Goldberg (1961) and Hamilton

(1968),

vVhen the problem was solved using this addi-

tienal information the following structural eqlla~

tions and path coefficients were obtained:
TEMPR = 1+,4-5,B1 ALTIT-Q,0171 MOIST

(0,62°) (**7, **20, JJs51)
CELMS = -45,i + 3,20 TEMPR + 0,248 MOIST

(13.4) (**34, **37, **18).

Comparison bet\~'een the two pairs of equa-

tions shO\v that the standard deviations of the path
coefficicnts have been reduced, and that two of the
- ., ,

coefficients for which there was no additional infor-. . ,
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mation had now reached statistical levels of sig-

nificance. The coefficients in the last structural

equation for the frequency of C. spectabilis were
largely determined by the assumed accuracy of the
additional information.

-,:

COMPARISON WITH OTHER STATISTICAL

METHODS

The analysis of ecological data involves twC}

aspects, (i) estimations cf the magnitude of par-
ticular relationships, and (ii) decision on the re-

liability of these estimates in the light of chance or

other errors. The first is curve fitting since its con-

cern is with showing the graphical relationships

within the data, whether' this be by free-hand

graphs or mathematical methods of fitting equa-

tions. The second is conc~rned with statistic,

sampling theory and probability and will require
some element of randomness. The distinction is

warranted since the requirements of the data may

be different for each. The two aspect are combin-
ed in most of the common statistical methods.

It has been shown in another paper (Scott 1969)

that in tenns of the user there can be some divi-

sion of the common statistical methods based on:

(i) subdivision into dependent and independent
variables (ii) whether the variables are qualitative

or quantitative and (iii) on the riature of random

variation or error.

Path analysis is one of a group of techniques

applicable where there are quantitative measure-

ments of both the dependent and the independent

variables. But along v.'ith Type 1 multiple regres-

sion of this group~ it does not require dependent

and independent variables to be random samples

from a nonnal distribution of values. Thus there

is a minimum of restrictions on sampling, and the

various levels of the factor variables could be

chosen by the investigator. This is a characteris-

tic of only a few methods and is suited to the ex.

perimental approach where the response over a

range of selected values is often required.

Path analysis is similar -to multiple regression in

giving explicitly a quantitative linear equation to
the relationship between' the variables, but differs

in the requirements for the independent variables.

In multiple regression the independent variables,

as their name suggests, are assumed to be indepen-

dent in their effect on the dependent variable. This

is even w i~ Type 1 multiple regression, though in

practice interaction, or curvilinear relationships,

are often introduced. Path analysis withstands these

criticisms in some circumstances. First the rela~

tionship between the independent variables in

one relationship may be specified in associated re~

lationships in which they appear as dependent
variables. Second, the. errors in some variables. (in-

termediate effects') are' taken into account when

these are independent variables in other relation-

ships. But, as in regression, the relationship be-

tween any introduced interaction or curvilinear

tenns are not taken into account in the mathe-

matics of the method and they are treated as if

they were further independent variables.
.

Where there is a priori quantitative data this may

be used as a null hypothesis against which the

sample data are tested in almost all the methods.

But it appears that methods of combining this a

priori data \vith the sample data have only been

developed for multiple regression and path analy~
, .
SIS.

The distinction between the methods is some~

what artificial in that they form a continuum of

methods \-\.hich, with one exception, are based, 01]

the least squares linear model, and where qualita-

tive variables are treated as quantitative states. The

differences are mainly in the assumption necessal)'

to draw statistical inferences from them.

The statistical requirements of the data for the

various methods are often more restrictive than. ,

commonly believed. The only justification in,prac-

tice is that many of the methods have been shown

to give good approximations even when the under-

lying assumptions are only partly valid.
Even where the statistical assumptions are not

correct the mathematical computations may .still

give the best estimates of the required <jtlantita-

tive relations or equations for the data,
, ..

, ,

SY-NTHESIS OF ECOLOGICAL .DATA

..-1.-Path Analysis as a Conceptual Frameu'ork
, , , ,

To this stage in the paper- path analysis has been
described primarily as a method of statistical anaIy-
sis,"and as such showed several advantages, The
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same features of the method also give" it some

potential as a means for synthesis of ecolog~~;U
data, The general problem of synthesis is first

discussed and is followed by a discussion on the

possible role of path analysis,

The aims of ecological research in a given situa-
tion are threefold:

( I) Isolate the variables which are important
to the organisms concerned'.

(2) Detennine how these variables bring
about their effect. This will depend on un-

derstanding the relationship between the
various aspects of the environment and or-

ganisms, and may involve field, laboratory
and controlled environment experimenta.
tion.

(3) In some manner synthesize the information
from all sources so that quantitative predic-
tions can be made about future behaviour

from measurements of the appropriate var~
iables. -

Understanding of a particular problem will pro-
gress through several stages. Initially, one will be
able only to speculate or hypothesize on the rele-

vant variables and interactions. This will be fol..
lowed by a stage where one can make qualitative
statements about the relationships. Subsequently,
as understanding and sophistication increase, it

will be possible to make quantitative measurements
and establish empirical quantitative relationships,
which in turn may- ultimately be replaced by exact

theoretically established relationships which may
or may not contain empirically dctennined com-

ponents.

If synthesis is to be achieved at any of these
stages then any method of data handling would
have to satisfy both ecological and mathematical

requirements.

The prime ecological requirement is that the
variable must be treated in a manner which re--
flects biological, biochemical and physical under~
standing of the processes involved. Any problem
or part of a problem may require working at
various levels of complexity, e.g. molecular to

global. While the ultimate understanding must be
based on. the exact, functional _ relationships con-
cerned, it may be sufficient in a particular prob-

}eIDto use empirical approximations. Another con~

sideration is that a particular factor can influence

an organism in a number of ways, e.g. through

survival, rate of growth, - or differentiation (Scott

and Billings 1964, p. 267), and on a number of
time scales (Billings 1952, Salisbury et ai, 19681.

The prime mathematical requirement is that
any method of synthesis make efficient exact quan-
titative manipulations on any of the relationships
found whether they be qualitative, empirical quan-
titative or exact theoretical relationships. In the

early stages of a problem there will be a require-
ment for a method with a statistical basis to de-
termine whether a particular conclusion is jus-
tifiable on the basis of sample dat"l, to construct
confidence intervals and to discriminate between

alternatives. However, as relationships are isolated
and intensive work is directed at accurate quan-

tifying, then there would be less demand for the
statistical properties of a method and the prob-
lem would become one of curve fitting. Also,

as understanding of a particular system is refined,
there will be a tendency for a static description to
become inadequate and for it to be replaced by a

dynamic approach.

In an ecological situation where there are many

variables, the number of interactions between them
is likely to be finite. This is because the inter-

actions arise from particular biological or physical

processes linking particular variables (e.g. wind-

by increasing the turbulent transfer of heat and
water vapour away from a leaf). Therefore any
variable is likely to be directly affected by only a
few other variables and in turn have only a direct

effect on some others. 1-[ore complex situations,
with their components, variables and interactions,
are combinations of these simpler direct relation.
ships,

That complex situations are combinations of
simpler functional relationships between groups of
variables seems the logical way to approach eco.
logical "problems. This is exemplified in the path

analysis or syste"ms approach. The path analysh
diagram provides a convenient conceptual too1 £01:

showing the variables and relationships in a par.
ticular problem even" if the mathematical aspecd
of the method are not used. Some comments 01
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-,~ .
the use of the path analysis approach in this wider

sense are relevant.

The use of the path analysis approach in a par.
ticular situation, although not making the prob.

lem any less complex, makes it manageable be"

cause attention can be directed at each link in the

scheme as required. The analyst can take a group
of variables and from all possible relatioflships that

may exist detennine which causal relationships are
present and the basis of their functiollal relation-

,
,,--

"", ,
ships. Conversely the synthesist can use the concept
to combine the known relationships between groups
of variables to build up a scheme showing the re-

lationships between many variables.

The path analysis approach is to be compared
with some other methods of analysis and synthe-
sis in ecology. "

The holistic approach (e,g, Billings 1952), with
its stress on many variables, and the implication of
interaction between all variables, while acceptable

..

in general tenns, does not provide much help when
faced with a particular problem where some rela-

tionships are known to be important, some un-
likely and others impossible. Also it does not pro-
vide the necessary framework for handling quall"
titative information.

Another approach is to attempt to synthesize

by reducing the environmental effect on organisms
to a few factors, five in the case of Major (1951)

and three each in the case of Loucks (1962) and

Waring and Major (1964). But synthesis should
not be regarded as the combination or merging of

many factors into a single factor, but rather the
ability to look at the effect of many interactions

simultaneously.

A related empirical approach to synthesis is the
use of multiple regression analysis (e,g, Coile 1952,
Fritts 1958, Scott and Billings 1964). In this, the

environmental variables considered relevant are
used to detennine which g~oup of these most

closely correlates with the variable of interest. The
-criticism of this approach is that it does not take

'into account any known relationship between the
independent variables.

1 The weakness in all rhese approaches is in re-
garding ecological systems as only two stages with

:the organism 9r community on one hand and the

91

environment on the other. A multistage process is
a ,more realistic approximation of an ecosystem,

where a factor "A" may influence a factor "B",
h
.
h

.
aff "C " " 0 " t H thw IC III turn ects , , e c. ence e

appeal of the path analysis approach,

Synthesis using -the causal.analysis approach is

probably best exemplified by recent work on model
building. Examples are the models of light inter~
ception by vegetation of de Wit, (1965) and Dun-
can et ai, (1967); or Watt's (1964) and Holling's

( 1965) models of the behaviour of insect popula-
tions; or Olsen's (1964) simulation of- production
of terrestrial ,vegetation. Such model ,building re-

quires consideration of particular processes in aU
their complexity and then the combination of sev-

eral such component processes to study larger

schemes.

The interpretation of the path analysis approach
has been in terms of cause and effect with the
arrows on the diagram indicating that ,the inter-
action occurs in a particular direction. In a second
sense the causal diagr31n is akin to a computer
flow diagram in indicating the order in_which, var.
iables are rC(luired or calculations made, while
the coefficients indicate the magnitude of these

interactions. llhis leads to a third interpretation on
can et al. (1967); or Watt's (1964) and Holling's
the arrows, namely the passage of time, in which
the coefficients become rate coefficients. Intuitively
this seems to be the most valuable approach in
ultimately describing the dynamic behaviour of a
system. Finally there will be a situation where the
arrows would simply be weighting factors as when
combining quantities of similar dimensions (trans"
fer coefficients), or empirical conversion factors
when combining quantities of. different dimensions.

The comments in this section have given the

path analysis approach a broader interpretation
than is applicable to the particular statistical

method and have been more fully developed in the
IBP programme (Swartzemann et ai, 1971),

2. Path Analysis as a Mathematical Procedure for

Synthesis

From necessity" any synthesis of ecological 'data
is usually concerned with the relationship between
many variables. \Vithin the causal multistage ap.
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Code

Description of Variab1es Name Range

-'-'- ------ -
CO:! exchange of shoots

(mgrn.g'"l.hr-1 ) CO2 -11 to tH
Temperature of fully illuminated
leaves (OC) LTEMP 2.3 to 45,~

LTEMP' LTEM2
Temperature of sampling
chamber wall (OC) CTEMP 0.6 to 4-0 ~

CTEMP' CTEM2
Light intensity in sampling

chamber (watLm-2 total) LIGHT 001' 1,001

LIGHT2 LIGH2
Temperature at which plant was

grown (OC) GTEMP 10° 20° 0, ,
30°

GTEMp2 GTEM2
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preach the path analysis technique can'''be''iused

in many circumstances for estimating the required

quantitative relationships.

\Vhcn there is a single set of quantitative meas-

urements of all of the-variables relevant" to a par-

ticular problem and when or if there is some

understanding of the'expected relationship between

the variables, path analysis provides a means of

detcrmining the required quantitative coefficients~

equations arid associated tests of significance. The

main requirements are that there is a complete set

of data for all variables and that the reJationship

between groups of variables is suitably approxi-

mated by linear additive equations. The first ex-

amples gi~'en earlier in the paper demonstrate the

use of the method in this context.

\"then there is additional quantitative infonlla-

tion available the method of mixed estimation pro-

vides a method' of combining information horn

different sources and of differing accuracies into a

unified estimate. It is, probably this property of

unifying empirical estimates from different sources

along with the potential stability of the path co-

efficients, which provides the method's greatest

potential in synthesizing ecological data.
-
This can be further illustrated bv another ex-,

ample from \vork given earlier in the paper. The

example shmving the use of path analysis in fit.

ting curviJinear relationships \vas based on an

experiment in which the CO2 exchange of shoots

of Trifolium repens \vas measured at a number

of light intensities and temperatures. The relation~

ship between leaf temperature, light intensity and

chamber temperatures, and between CO2 ex-

change, light intensity and chamber temperature,

wcre the same as given previously, i.e.:

LTEMP = 0,88 + L08 CTEMP - 3.4xl0':1 CTEM2

+ L4lxlo-'LIGHT - 4,13x1O-' L1GH2
(1.5,99) (0;;5+, **4, **24, **12, *44)

C02 = -2 La + 2,37 LTEMP-O,0589 LTEM2
+ 0,162 LIGHT-L21x1O':I LlGH2
(10.5, SO) (**19, **13, **9, **8, **11).

A subsequent experiment (Scott 1970) with the

same species was concerned with ho"v the tem-

perature at which the plant W;B grown influenced

its CO2 exchange at two light intensities and a

similar pnge of temperatures. The difference be-

tween the t\VO experiments was that, in the second,

growing temperature was introduced as a further

variable, and that measurements were made at

enly two light intensities. The description of var-

iables and their range of values is given in Tablc

5 and the expected relationship between the varM

iables in the following diagram;

CTEMP
CTEM2

LIGHT
LlGH2

LTEMP
>LTEM2

GTEMP
GTEM2

TABLE 5. Descrij}lion and Range of Variables in

Synthesis F;xamjJ!e ofl~,[lect of Growing Temper-

at.ures all the CO2 Exchange of Shoots 'of Trifo-

limn rcpens.

The structural equations and path cocfficien1

calculated from the data were as follows:

-C02
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TEMP = 2,26 + 0,975 CTEMP-5.46xlO'" CTEM2

+ 1.40xlO-' LlGHT-3,10x1O-" LIGH2
(1.5,99) (**14, **3, **16, **22, I1slOO)

CTEM2 = -56,2 + 1.00 LTEMP-O,G3GO LTEM2

+ 0,144 LlGHT-8,62xlO',1 LlGH2
+ 5,11 GTEMP-0.121 GTEM2
(15,8,73) (**21, *48, **31, **22,
**38, **24, **24),

The equation for leaf temperature was very sim.

ilar to that of the earlier experiment, except for

the difference in the constant tenn. For CO2 ex-

change the path coefficients were similar to those

of the previous experiment except for the co-

efficient for LTEMP, The latter differed marked-

ly from that in the first experiment but also had

a larger standard deviation.

The structural equations and path coefficients

of the second experiment were recalculated using

the path coefficients for light, chamber and leaf

temperature as a priori additional information and

the following were obtained:
. .

LTEMP = 2,26 + 0,975 CTEMP-5.42xlO" CTEM2

+ 1.44xlO-' LlGHT-3,56xlO'" LlGH2
(1.2,99) (**8, **1, **3, **2, **7)

C02 = -68,1 + 2,46 LTEMP-0,0567 LTEM2

+ 0,144 LIGHT-'1.05xlO' LlGH2

+ 5,06 GTEMP-O,120 GTEM2
(14.5,77) (**15, **3, **2, **2,
**2, **22, **23).

The result of using the additional information
was to reduce the standard deviations of esti-

mates of leaf temperature and CO2 exchange by

21 percent and 7 percent respectively. It has also

greatly reduced the standard deviations of the

path coefficients for which there was a priori in-

formation and slightly reduced the standard devia-

ticm:, of the other variables.

As the example shows, the method is best suited

to synthesizing relationships in problems where the

number of variables being considered is exp:mding

and where the results of simpler experiments can

be used as the a priori restrictions in the more com-

plex situations. The same example also showed the
- .

use of a previ0us experiment to determine the

shape of a particular response curve (C02 ex-

change versus light intensity) and using this in a

second more complex scheme where there were

measurements at only two points on that particular

i'esponse curve. If the coeffic:ents determined in

one experiment are to be used as restrictions in an-

other then it would be desirable that' other condi-

tions were comparable and constant. This restric-

tion may be desirable, but is not absolute because,
jf the particular relationship between the variables

has been correctly identified, then the values ob-

tained should be similar in whatever context they

were obtained, irrespective of how other relation-

ships or variables may' differ behveen the two
situations.

There are limitations to path analysis as a math-
ematical procedure for synthesis, but these will be-
come a factor only when a particular problem has

reached a degree of sophistication. Initially, the
statistical characteristics of the method will be of
importance in testing particular hypotheses and
determining cGnfidence intervals. As understanding
of a particular problem increases and measure-
ments are refined there will be less need for these
statistical characteristics. Even in such circum-

stances path analysis may remain the best cu~e-
fitting procedure for estimating unk.no~'11 coeffici-
ents.

The computational method used in this paper

is a single estimate from a 1\vo stage lea~t squares
solution. It is probably only when the path cow

efficients have reached a certain degree of stab-

ility that it would be justifiable in using ~urther

computational refinements such as the iterative

methods using the t\VO stage least squares, or in

the three stage methods which determine the best

c.:.timate for all coefficients considered simultan-

eously (Zellner and Theil 1962),

The method as outlined probably does not nuke

the most efficient use of data where there is a large

a:nount of a priori data, for example where some

p3.th coeffic,ients are known exactly or where there
are estimates of particular path coefficients from

several sources. But this should be a minor prob-

lem as efficient estimates should be available

either as elaborations of the theory of path analysis

with mixed estimation or from general princip!es

of adjustment of data (Deming 1946), Path analy-

sis is not ideally suited for relationships other

than Enear though, as the curvilinear example

showed, it may be possible to get a good approxi-

ffi:ttion us:ng transformations.. ".
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One of the utilitarian purposes in studying',:any

relationship is the hope that some processes can be

optimised. In this path analysis fanns a good pre-

cursor for the application of linear programming.

Linear programming is another technique which

was primarily developed' by economists but

,..hieh has recently' been used in ecological prob-

lems (e,g, van Dyne 1966). The method deter-

mines the lnaximum possible values of a linear

combination of a group of variables given that

other linear combinations of these variables arc

subject to certain constraints. For example, given

the relationship between individual species and ell-

vironrnental factors, the relative p:llatability of

the species, the range of values and the relation-
'ship betwecn the environmental variables, the

technique could determine the most favourable

site in terms of plant growth for grazing. Thus the

structural equations from path analysis together

with other restrictions could be used directly in

linear progralnming and would overcome some of

the difficulties in using multiple regression relation-

ships in such contexts.
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