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Abstract: Important knowledge gaps remain with regards to the ecology and the systematics of New Zealand’s 
native earthworms. With many putative new species yet to be described, often specimens cannot be named, 
which makes species inventory, monitoring and community comparisons difficult. Our work aimed to identify 
new putative taxa of New Zealand native species of earthworms, and describe their distribution in selected 
human-modified ecosystems. A total of 24 earthworm taxa (13 native and 11 exotic) were identified using a 
DNA barcoding approach focusing on 16S rDNA and COI (cytochrome oxidase subunit 1). The combination 
of morphological and molecular analyses were complementary in elucidating species identity. However, of the 
13 native taxa, eight could not be named and are likely to be undescribed species from the genera Octochaetus, 
Maoridrilus and Deinodrilus. Most native species appeared to have a restricted geographic distribution linked 
to soil conditions, in particular pH and organic matter.
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Introduction

Since the arrival of Polynesians c. 750 years ago, more than 
two-thirds of New Zealand’s native forests and grasslands 
have been replaced by human-modified landscapes, resulting 
in depauperation of native fauna including earthworms. 
Following conversion of native habitat to agriculture, native 
earthworm communities have largely disappeared from 
newly established farmland (Lee 1961). Introduced European 
Lumbricidae (mainly Aporrectodea caliginosa, A. longa,  
A. rosea, A. trapezoides, Lumbricus rubellus, and Octolasion 
cyaneum) with more tolerance to environmental disturbances 
have become dominant (Lee 1985; Fraser et al. 1996; Springett 
et al. 1998). Native species in the Megascolecidae family 
are often restricted to protected habitats and remnants of 
native vegetation, but they are also found on the borders of 
agricultural land (Kim et al. 2015). Coexistence of native and 
exotic species has recently been reported where patches of 
native vegetation borders agricultural land (Kim et al. 2015; 
Bowie et al. 2016) or when native vegetation is restored on 
agricultural land (Boyer et al. 2016).

Of the 3700 species of terrestrial earthworm described 
worldwide, 173 were described in New Zealand prior to 2000 
(Blakemore 2006; Glasby et al. 2009). The earthworm species 
list was mainly the result of Lee’s monograph published in 
the late 1950s (Lee 1959a). Despite an extensive geographical 
coverage of New Zealand, Lee’s work was restricted to 
areas that were relatively easily accessible at that time. As 
a result, recent studies have unearthed a number of putative 
undescribed native species particularly in remote locations 
where no previous searches had been conducted (Boyer et al. 
2011; Buckley et al. 2011). 

In many cases, research on earthworm taxonomy has been 
limited by a lack of standardised morphological characters, 

phenotypic variability, and difficulties in defining diagnostic 
characters at juvenile or cocoon stages (Decaëns et al. 2013). 
Some of these taxonomic difficulties may be alleviated by 
recent developments in imagery for the description of internal 
morphology using Micro-Computed Tomography (Fernández 
et al. 2014), but lack of taxonomic expertise remains limiting. 
In recent years, the introduction of DNA barcoding has 
effectively aided species discrimination, identification of new 
taxa, reconstruction of phylogeny, and biodiversity assessments 
in numerous invertebrate groups, including earthworms (King 
et al. 2008; Chang & James 2011; Decaëns et al. 2013). DNA 
barcoding can be particularly useful for resolving previous 
taxonomic confusion but also to accelerate new taxonomic acts. 
For example, a new species of Hormogaster (H. abbatissae) 
was reported by Novo et al. (2010) based on the combination 
of morphological information and phylogenetic position 
following DNA barcoding. Moreover, molecular tools can be 
used to support phylogeography analysis for single species or 
a group of closely related species (e.g. Chang & Chen 2005; 
Minamiya et al. 2009) as well as discriminating between 
native and exotic species (Cameron et al. 2008; Porco et 
al. 2013). In conjunction with phylogenetic analyses, DNA 
barcoding analyses not only contribute to the discovery of new 
species and the identification of specimens, but also enhance 
our understanding of earthworms’ ecology, taxonomy and 
evolutionary history (Domínguez et al. 2015).

Due to its unique geography, New Zealand is potentially 
home to many yet to be described Megascolecidae inhabiting 
isolated remnants of undisturbed native vegetation (SB unpubl. 
data). Buckley et al. (2012) anticipated that about 100 cryptic 
taxonomic species may remain to be described and molecular 
tools are now instrumental to the taxonomic description of 
native earthworms in New Zealand. Boyer et al. (2011) used 
DNA barcoding and phylogenetic analyses (based on the 16S 
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rDNA and COI genes) to support their description of three 
new species of Megascolecidae (Deinodrilus gorgon, Ma. 
felix, Octochaetus kenleei). 

The primary aim of this study was to identify New Zealand 
native earthworms, including undescribed species, through 
DNA barcoding and describe their occurrence, as well as that 
of introduced species, in human-disturbed soils in relation to 
soil physicochemical properties.

Materials and methods

Earthworm sampling 
Earthworm collection was undertaken between 2012 and 2015 
in remnants of native vegetation and at a number of restoration 
areas in the South Island of New Zealand (Table 1). The 13 
sampling sites were located at Banks Peninsula, Bankside, 
Eyrewell and Lincoln in Canterbury; and Punakaiki on the West 
Coast. To avoid the dry season when soil is hard to excavate 
and earthworms are more difficult to find, sampling took 
place mostly between late autumn (May) and the beginning 
of summer (December). 

Soil pits (20 × 20 × 20 cm) were dug using a spade and 
earthworms were hand-sorted in the field. Collected earthworms 
were brought back to the laboratory for morphological 
identification following Lee (1959a, b) as well as for DNA 
analysis and other experimental work. Specimens were 
first categorised into morphospecies based on their external 
morphology, size, colour and behaviour. A total of 32 specimens 
representing all morphospecies were then analysed through 
DNA barcoding using the COI and 16S genes in an attempt 
to confirm species status. 

DNA extraction, PCR and sequencing
Molecular analyses were conducted following a modified 
method from Boyer et al. (2011). Earthworms were washed in 
distilled water, then tissue samples (muscular body wall) were 
taken from behind the clitellum (mostly the tip of the tail) and 
preseved in 98% ethanol. Genomic DNA was extracted using 
a GF-1 Tissue DNA extraction kit (Vivantis Technologies Sdn. 
Bhd., Malaysia) following the manufacturer’s recommendation. 
DNA was eluted in 200 µl preheated elution buffer and stored 
at -20oC until further analysis. 

Universal invertebrate primers for 16S (LR-J-12887 and 
LR-N-13398; Simon et al. 1994) and COI (LC01490 and 
HC02198; Folmer et al. 1994) were used to amplify ~550 and 
~650 base pair fragments of DNA respectively (see Table S1 in 
Supplementary Material). PCR reactions (10 μl) consisted of 5 
μl GoTaq® Green Master Mix (Promega, Madison, WI, USA), 
0.1 μl MgCl2 [25 mM], 0.4 μl forward and reverse primers [10 
μM], 1.5 μl DNA template and 2.6 μl DNA-free water. The 
thermocycling protocol comprised of an initial denaturation 
at 95°C (4 mins), 35 cycles of denaturation at 94°C (1 min), 
annealing at 52°C (1 min) and elongation at 72°C (1.5 mins), 
followed by a final elongation at 72°C (10 mins). Negative 
controls were included to detect potential contamination. PCR 
products were sequenced in both directions using BigDye® 
Terminator Cycle Sequencing Kit following the manufacturer’s 
protocol (Thermo Fisher). 

Delineation of molecular taxonomic units (MOTUs) 
All DNA sequences generated as part of this study were 
submitted to the GenBank database (accession numbers: 
KP771668–KP771678, KP780261–KP780262, KP828823–
KP828824). Sequences were manually edited using FinchTV 
1.40 (Geospiza), and compared to existing sequences in the 
Genbank database as well as sequences from Buckley et 
al. (2011) and Boyer (2013). The sequences generated here 
and their best match in the existing databases were exported 
into MEGA6 (Tamura et al. 2013) and Geneious® 6.1.8 
(Biomatters) for alignment using MUSCLE (Edgar 2004). 
This resulted in alignments of 49 sequences for COI and 48 
sequences for 16S. Neighbour-Joining trees (Saitou & Nei 
1987) were then prepared and p-distances were calculated to 
make taxonomic decisions. The R package SPIDER (Species 
Identity and Evolution in R) was used to determine species 
boundaries and estimate the number of species present 
(Brown et al. 2012). The threshold for interspecific distances 
was calculated using the function localMinima in SPIDER 
(Brown et al. 2012). 

Soil analyses
Soil analyses were performed at eight of the 13 sampling sites 
(Table 1). To elucidate soil properties at those collection sites, 
500 g of fresh soil was sampled from the pits at the time of 
earthworm sampling. All soils were analysed by Analytical 

Table 1. Earthworms sampling sites and GPS coordinates. Punakaiki is located on the West Coast while the other four 
sampling sites are located in Canterbury.
__________________________________________________________________________________________________________________________________________________________________

Sampling sites  Location (latitude/longitude) Sites where soil samples were collected
__________________________________________________________________________________________________________________________________________________________________

Punakaiki Nikau Reserve -42° 8'38.39"S / 171°19'50.36"E 
 Restored and unplanted land -42° 8'26.74"S / 171°19'47.53"E 
__________________________________________________________________________________________________________________________________________________________________

Bankside Bankside Scientific Reserve -43°43'49.33"S / 172°09'34.60"E 
__________________________________________________________________________________________________________________________________________________________________

 Okuti Reserve -43°47'07.98"S / 172°49'51.23"E 
 Bossu Road -43°48'59.93"S / 172°51'49.46"E 

Banks Peninsula Southern Summit Roadside -43°44'15.41"S / 172°54'32.64"E 
 Kaituna Reserve -43°44'37.23"S / 172°41'14.82"E 
 Ahuriri Reserve -43°39'58.97"S / 172°37'26.37"E 
 Northern Summit Roadside  43°39'59.86"S / 172°37'28.63"E  
__________________________________________________________________________________________________________________________________________________________________

Eyrewell DOC Scientific Reserve -43°22'59.07"S / 172°11'39.78"E 
 Spencer Bower Reserve -43°25'42.08"S / 172°25'48.10"E 

Lincoln Liffey Spring -43°38'18.64"S / 172°29'06.93"E 
 Lincoln University -43°38'37.19"S / 172°27'43.77"E
__________________________________________________________________________________________________________________________________________________________________
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Services in the Department of Soil and Physical Sciences at 
Lincoln University using standard methodologies, with ASPAC 
Ring Test QA procedures. Available nitrogen was analysed 
on fresh soil following extraction with 2M KCl (Blakemore 
1987) and was determined using a FIA star 5000 triple channel 
analyser (Foss Tecator AB, Sweden). The remaining soil was 
air-dried and sieved to <2 mm using a stainless steel sieve for 
further soil chemical analysis. Soil pH (1:5W) and electrical 
conductivity (EC) were measured using pH and EC meters 
(Mettler Toledo Seven Easy). For organic matter (OM) content, 
10 g of oven dried (100oC) soil was processed through loss 
on ignition at 550oC in a muffle furnace (Blakemore 1987).

Statistical analysis
Soil properties, such as pH, EC, OM content and mobile 
nitrogen (NH4

+ and NO3
-), were analysed using one-way 

ANOVA followed by a Fisher’s least-significant-difference 
post-hoc test. Data were analysed using Minitab 17 (Minitab 
Inc., State College, Pennsylvania, USA).

Results 
Specimen identification 
Species delineation thresholds calculated for the COI and 16S 
genes were 3% and 2.8%, respectively, meaning that specimens 
of a similar species have at least 97% similarity in their COI 
DNA sequence, and at least 97.2% similarity in their 16S DNA 
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Figure 1. Neighbour joining tree for COI (left) and 16S (right) based on 36 earthworm specimens collected as part of this study (names in 
bold), along with their closest matches according to a MegaBLAST search against the Genbank library and sequences from Boyer (2013) 
and Buckley et al. (2011). The enchytraeid species Friderica magna was used as an outgroup. Trees are drawn to scale, with horizontal 
branch lengths corresponding to percentage difference (see scale). The evolutionary distances were computed using the Kimura 2-parameter 
substitution model. Specimens linked by red lines are considered to be of the same species based on species identify thresholds of 3% 
and 2.8% for COI and 16S, respectively. 

sequence. Based on these thresholds, 24 discrete taxa were 
identified from the 36 individuals analysed (Fig. 1).

Only two specimens could be confidently identified 
at species level using morphological characteristics. They 
belonged to the native Megascolescidae species: Octochaetus 
multiporus and Ma. transalpinus (Table 2). Eight more 
specimens could be identified at genus level based on their 
morphology: Octochaetus, Maoridrilus, and Deinodrilus. 
When using DNA analyses, 11 specimens could be identified 
at species level from their 16S sequence, and the same was 
true for COI although the specimens that could be identified 
by each marker were different. The combination of both 
molecular markers and morphology led to the identification 
of 17 specimens at species level, and three at genus level, 
leaving 16 specimens unidentified. Despite slight differences 
in the datasets and the trees, the analysis of COI and 16S 
sequences provided no contradictory diagnostic in terms of 
species identification (Fig. 1, Table 2). 

 
Earthworm distribution and soil chemistry
A total of 13 native and 11 exotic taxa were sampled across 
all study sites with richness at the different sites ranging from 
two to six taxa (Fig. 2, Table S2 in Supplementary Material). 
The Punakaiki restoration area contained the greatest richness 
of native earthworms (six taxa) in the Nikau Reserve and 
the greatest richness of exotic earthworms (eight taxa) in the 
restored land. Five of the 13 sites had a mixture of native and 
exotic earthworms. 
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Figure 3. Soil pH and OM content at 
sampling sites in which native earthworms, 
including Maoridrilus transalpinus (blue 
box) and Octochaetus multiporus (grey box), 
and exotic earthworms, including Octolasion 
cyaneum, Octolasion lacteum, L. rubellus, 
and Aporrectodae caliginosa (red box), were 
found to co-occur. Each dot corresponds to 
values for one sampling site (mean ± SE). 
In addition to the sites analysed as part of 
the current study, soil data for sheep- and 
dairy-farmlands collected as part of previous 
studies (Fraser et al. 1996; Kim et al. 2015) 
were added to the graph.
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Table 2. Species affiliation after morphological identification and DNA-based identification. When species could not be 
identified, specimens were marked with No Match (i.e. the closest hit on Genbank was greater than the species delineation 
threshold) or X (no DNA sequence available). For clarity, specimens are presented in the same order they appear in the 
neighbour-joining tree (Fig. 3).

Specimen name Morphological ID (if any) DNA-based identification (COI) DNA-based identification (16S) Native / Exotics
__________________________________________________________________________________________________________________________________________________________________

End1  No Match No Match Native
EXO5  Octolasion cyaneum  Octolasion cyaneum  Exotics
RTU1  Aporrectodea caliginosa  Aporrectodea caliginosa  Exotics
RTU3  No Match Aporrectodea trapezoides  Exotics
RTU7  No Match Aporrectodea trapezoides  Exotics
End8  No Match No Match Native
EXO1  Lumbricus rubellus  Lumbricus rubellus  Exotics
RTU4  X Eiseniella tetraedra Exotics
EXO3  Dendrobaena octaedra Dendrobaena octaedra Exotics
End2  Amynthas corticis No Match Exotics
RTU6  Dendrodrilus rubidus X Native
YN7gold  No Match Megascolex laingii Exotics
End3 Deinodrilus  Deinodrilus gorgon Deinodrilus gorgon Native
End88 Deinodrilus  Deinodrilus gorgon Deinodrilus gorgon Native
M7(AB) Deinodrilus  Deinodrilus gorgon X Native
RTU5  No Match X Native
End4 Octochaetus  Octochaetus kenleei  Octochaetus kenleei  Native
U6AB Octochaetus  Octochaetus kenleei  X Native
YN1 Octochaetus multiporus No Match No Match Native
End4YN  No Match No Match Native
YN7_White  No Match No Match Native
YN3  No Match No Match Native
EE02  X No Match Native
EW01  X No Match Native
YN7_Red Deinodrilus (sp.1) No Match No Match Native
End5  No Match X Native
M4BC  No Match X Native
End77  No Match No Match Native
LU01 Maoridrilus (sp.2) X No Match Native
PH01 Maoridrilus (sp.1) X No Match Native
PH02  X No Match Native
YN4 Maoridrilus transalpinus No Match No Match Native
EE01  X No Match Native
End7  No Match No Match Native
End9_Green  No Match No Match Native
PK01  No Match No Match Native__________________________________________________________________________________________________________________________________________________________________

Table 3. Physicochemical soil properties (mean ± SE, n=3) in Punakaiki and Banks Peninsula, where widespread exotic 
and native species were co-occuring. Native species include M. transalpinus and O. multiporus and exotic species include 
O. cyaneum, L. rubellus, and A. caliginosa (c.f. Table 3). EC: Ecectrical conductivity; OM: Organic Matter content. 
__________________________________________________________________________________________________________________________________________________________________

Sample site  Vegetation Soil pH EC OM NH4-N NO3-N
  type (1:5W) (dS·cm-1) (%)           (mg kg-1) 
__________________________________________________________________________________________________________________________________________________________________

Punakaiki Nikau Reserve Forest 4.7 ± 0.2 0.19 ± 0.03 23 ± 0.2 20 ± 1.4 18 ± 0.5
 Restored land Pasture 5.44 ± 0.01 0.04 ± 0.01 11 ± 1.9 2.0 ± 1.2 0.7 ± 0.2
__________________________________________________________________________________________________________________________________________________________________

 Okuti Reserve Forest 5.9 ± 0.5 0.08 ± 0.02 12 ± 1.3 4.0 ± 1.3 9.7 ± 2.3
 Southern Summit Road Forest 5.7 ± 0.2 0.10 ± 0.01 22 ± 0.8 0.9 ± 0.3 9.7 ± 1.3

Banks Peninsula Kaituna Reserve Forest 6.3 ± 0.1 0.06 ± 0.01 11 ± 0.1 0.4 ± 0.2 2.6 ± 0.1
 Ahuriri Reserve Forest 5.5 ± 0.1 0.08 ± 0.01 30 ± 2.6 0.9 ± 0.1 3.9 ± 0.5
 Bossu Road Pasture 5.3 ± <0.1 0.04 ± 0.01 17 ± 0.7 1.1 ± 0.4 0.4 ± 0.1
 Northern Summit Road Pasture 5.7 ± 0.1 0.04 ± 0.01 18 ± 0.6 0.5 ± 0.2 2.1 ± 0.2
__________________________________________________________________________________________________________________________________________________________________
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The Nikau Reserve soil was more acidic and contained 
higher concentrations of mobile N (ammonium and nitrate) 
than soils from Canterbury sites (Table 3) and contained the 
greatest diversity of native earthworms (six taxa). In contrast, 
less acidic Canterbury soils (Banks Peninsula), which displayed 
moderate concentrations of mobile N, often harboured only 
three indigenous species (Maoridrilus spp. and Octochaetus 
multiporus). 

   

Discussion

Specimen identification
A total of 15 Megascolecidae species were identified based on 
morphology and DNA analyses. Of these, Am. corticis and Me. 
laingii have been described from Australia but are considered 
to be exotic in New Zealand (Lee 1959b; Blakemore 2006).

The 17 unidentified specimens (forming eight species 
according to the DNA analysis) are thought to be undescribed 
indigenous Megascolecidae as they did not match the 
morphology of any described species and had no corresponding 
reference in existing DNA libraries. Therefore, our work 
confirms previous suggestions that many New Zealand native 
earthworm species are yet to be described (Boyer et al. 2011; 
Buckley et al. 2011). Many New Zealand native earthworms 
have restricted distributions. In this study, none of the native 
species found at Punakaiki were present in Canterbury, 
which suggests that the alpine chain between the two regions 
forms a barrier to earthworm dispersion as illustrated by the 
distribution of many species (Lee 1959a; SB unpubl. data). 
One exception is Ma. transalpinus, a widespread species 
whose distribution spans from the South Island West Coast to 
Banks Peninsula via Arthur’s Pass (SB unpubl. data; Kim et 
al. 2015) and therefore is now classified as a non-threatened 
species (Buckley et al. 2015). Another dominant species on 
the eastern side of the Southern Alps is the deep burrowing 
endogeic Octochaetus multiporus that is found in Canterbury 
reserves (Kim et al. 2015) as well as in agricultural pastures on 
ridges of Banks Peninsula. This species has long been reported 
to occur in agricultural pastures (Springett et al. 1998). Other 
native species had more restricted distributions and were only 
found at one location, or two nearby locations.

With regards to exotic earthworms, nine species were 
identified, four of which were Lumbricidae: Am. corticis, Ap. 
caliginosa, D. octaedra, F. magna, L. rubellus, Lumbricidae 
spp., Me. laingii, Octolasion cyaneum, and Octolasion lacteum. 
These species are known to be widespread in West Coast soils 
as well as in Canterbury (Table S2; Hahner et al. 2013; Kim 
et al. 2015; Smith et al. 2016). Sites in the Punakaiki region 
contained the greatest richness of both native and exotic 
earthworms, six and eight taxa, respectively. The high OM 
content of the litter from the local luxuriant broadleaf vegetation 
at these sites (Hahner et al. 2013; Rhodes et al. 2013) may 
have promoted a greater richness of native earthworms filling 
a variety of ecological niches. In the restored agricultural land, 
the smaller scale, less intensive nature of agriculture when 
compared to the Canterbury sites may have contributed to a 
greater diversity of exotic earthworms. 

Soil pH and OM are both vital factors for earthworm 
feeding activity and survival (Curry 2004). Two native species 
(Ma. transalpinus and Octochaetus multiporus) that are known 
to have a wide geographic distribution (SB; unpubl. data; Lee 
1959a; Buckley et al. 2015) were collected at several of the 

sampling sites. Both of these species occurred in soils that 
contained similar OM content but had quite different soil pH 
(Fig. 3). Temperate climate species are generally found in soil 
where pH is between 4.5 and 7.4 (Bouché 1972). Maoridrilus 
transalpinus was collected from soils of pH 5.5 to 6.3 and 
Octochaetus multiporus was found in soils of pH 5.3 to 
5.9. Springett et al. (1998) also estimated that Octochaetus 
multiporus was distributed in soils of pH 4.9 in native forests 
to 5.7 in hill pastures. It seems that the endogeic Octochaetus 
multiporus was more likely to have stronger resistance to 
acidification than the anecic species. Exotic species such as  
L. rubellus, L. terrestris, Ap. caliginosa, A. rosea and Octolasion 
cyaneum occurred over a much broader range of environmental 
conditions, including more acidic (pH 4.7) and less organic 
soils (7.3% of OM) than those where native species were found. 
Fraser et al. (1996) reported exotic earthworms in agricultural 
soils in Canterbury containing 4.3% to 5.5% OM. 

Conclusion

A total of 179 indigenous earthworm species belonging to 
26 genera of the Megascolecidae family have been described 
previously from New Zealand (see Table S3 in Supplementary 
Material). However, many more undescribed species may be 
present in remote, difficult to access locations or places that 
simply have never been sampled before. A large number of 
undescribed species of earthworm have been reported in recent 
studies (e.g. SB unpubl. data; Waterhouse et al. 2014) and a 
significant taxonomic effort is required to complete the list of 
New Zealand native earthworms. The present study illustrates 
the rudimentary nature of much of our existing knowledge. Even 
when species have not been described, molecular analyses can 
provide a first insight into not only their evolutionary history, 
but also their distribution and environmental requirements. 
However, widespread sampling, the consolidation of existing 
DNA databases, and the sequencing of a variety of genetic 
makers (e.g. 16S, 28S, and COI) will be necessary to make 
informed decisions for the conservation of native earthworms, 
of which 59% of the formally described species are currently 
classified as ‘data deficient’ by the Department of Conservation 
(Buckley et al. 2015). 
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